

Introduction

Reading is an important life participation activity, People with aphasia (PWA) often experience chronic reading difficulties which negatively impact their quality of life (Brookshire et al., 2014; Lee et al., 2015).

- Some PWA find text-to-speech (TTS) useful in improving their reading speed or comprehension (Wallace et al., 2022)
- Word length and word frequency may affect silent reading when using TTS
- Eye-tracking is one way to study this

Aim: Explore the relationship between eye gaze behaviors and (1) word length, and (2) word frequency when PWA read narratives across two reading conditions (TTS vs. Reading Only [RO]).

Methods

*Data extracted from Knollman-Porter et al., 2023

Participants

- 9 PWA (ages 37 76 years)
- 5 men & 4 women
- 3 Broca's; 3 Anomic; 3 Transcortical Motor

Materials

- Tobii Dynavox Pro Spectrum[©] Eye Tracker
- 20 Narratives
- Microsoft© "David" voice

Experimental Procedures

- Eye-Tracking Calibration & Instruction Review (1 Practice Narrative)
- 2. 10 TTS & 10 RO narratives (randomized order; sets of 5)
- 2 Gist Questions per narrative

Analysis

Pre-Analysis

- Coding of Eye Tracking Data in Microsoft Excel®
- Word fixated, length, position, #, fixation duration, fixation count • Lexical Variables
- Word length & frequency: COCA database; Excel© =LEN() function
- Only nouns, adjectives, adverbs, and verbs included in the analysis

Outcome Measure	Definition
Probability of First Pass Fixation (FPF)	If a word was fixated on
Gaze Duration (GD)	Sum of all fixations on a word before the read a saccade to a following word in the sentend
First Fixation Duration (FFD)	The time readers spend fixating on a word t their gaze lands on it as they move through
Total Fixation Duration (TFD)	Total word reading time

Statistical Analysis in R:

- Binary Measure: Logistic Mixed Effects Models
- Continuous Measures: Linear Mixed Effects Models

Acknowledgements:

We would like to thank Andew Bevelhimer, Amber Ahearn, Caleigh Powell, Clare O'Connor, Gabby Hong, Jenn Saunders, Kate Bailey, Meredith Marmolejos, Paige Wall, and Phoebe Yan for their assistance with this project. Additionally, we would like to thank the participants for their contributions to this research.

Reading Narratives with Text-to-Speech Technology: How do Word Length and Word Frequency Affect Eye Movements?

Briana M. Patterson, BA¹; Sarah E. Wallace, PhD¹; Michael Walsh Dickey, PhD², Tessa Warren, PhD¹, Candace M. van der Stelt, MS¹, Sophia Coolsen¹, Manasvita Rajesh¹, Gracie Long¹, Karen Hux, PhD³ ¹University of Pittsburgh, ²Miami University of Ohio, ³Quality Living, Inc.

Results

Word Length Effects

• Word length had a significant positive main effect on **FPF** ($\beta = 2.79$; p<.001), **GD** ($\beta = 1.61e$ -1; p<.001), and **TFD** (β = 0.43; p<.001)

Word Frequency Effects

• Word frequency had a significant negative main effect on **FPF** (β = 0.70; p<0.001) and **TFD** $(\beta = 0.06; p < 0.05)$

The more frequent the word... The less likely a reader was to fixate on it The less likely the reader was to fixate on it multiple times

- ader makes the 1st time a sentence

The longer the word...

- The more likely a reader was to fixate on it
- The greater the sum of fixations on that word during the reader's first pass
- The more often the reader fixated on it multiple times

Clinical Implications:

- TTS may help PWA process longer words in narratives

Limitations:

- Small sample size (n = 9)

Future Research Directions:

Results Cont.

Discussion

Like neurotypical adults (Rayner, 2004, 2009), PWA require

increased processing time for longer and low-frequency words

Reiterating findings at the sentence level (DeDe, 2017; Huck et al., 2017; Rayner et al., 2004)

Condition alone did not have a significant effect on eye movements

• Individualized reading support for PWA is critical for success

• Clinicians should consider word length & frequency when designing treatment materials to best support comprehension

• Retrospective design (narratives not designed for this analysis)

• Most with high reading scores

• Participant C as an outlier (letter-by-letter reading)

Findings can only be interpreted with reference to content words TTS Methodology (i.e., restricted manipulation, ignoring output)

• Experimental narrative design (word length & frequency) Enhanced TTS Implementation (customization & improved analysis) • Increasing sample size to improve generalizability

